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Project Overview 
 
 Project Participants 

 
 
 
 

 

 
 

 

 DOE Project Manager: Andrew Jones 

 Project Number: DE-FE0007741 

 Total Project Budget: $2,088,644 

 DOE: $1,658,620 

 Cost Share: $430,024 

 Project Duration: Oct. 1, 2011 – March 31, 2015 

 

Enzymes & Solvents Kinetics & Bench-scale Tests Ultrasonics & Aspen®  Full Process Analysis 

DOE Program Objectives 
Develop solvent-based, 
post-combustion technology 
that 
• Can achieve ≥ 90% 
CO2 removal from coal-
fired power plants 
• Demonstrates progress 
toward the DOE target of 
<35% increase in LCOE. 
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Project Objective 
 

Complete a bench-scale study and corresponding full technology 
assessment to validate the potential in meeting the DOE Program 
Objectives of a solvent-based post-combustion carbon dioxide capture 
system that integrates  

 a low-enthalpy, aqueous 
potassium carbonate-based solvent  
 

 with an absorption-enhancing 
carbonic anhydrase enzyme catalyst 
 

 and a flow through ultrasonic-
enhanced regenerator  
 

 in a re-circulating absorption-
desorption process configuration 

CO2 + H2O + K2CO3 ↔ 2KHCO3  
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Challenges 
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Process Concept 
 

 Advantages 

Low enthalpy, benign solvent  
(catalyzed aq. 20% K2CO3) 

 K2CO3 ∆Hrxn 27 kJ/mol CO2 

 MEA ∆Hrxn 83 kJ/mol CO2 

Potential for ~50% regeneration 
energy vs. MEA 
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 Challenges 

Demonstrate atmospheric regeneration 
at 70°C enabled by ultrasonics 

Demonstrate overall techno-economic 
feasibility 

  energy demand 

  enzyme requirement 

Absorption 
30-50°C 

Regeneration 
~70°C 
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Background on Ultrasonic Technology 
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 Rectified Diffusion Mechanism: [1] 

 Bubbles expand and shrink in an ultrasonic field 

 Expanding bubbles = lower pressure/ higher surface area   

 Shrinking bubbles = higher pressure/ lower surface area 

 Rectified diffusion results when expanding bubbles allow for a biased 
transfer of dissolved gas into the bubble from solution 

 

 Proposed approach for solvent regeneration: 

 Create a population of seed bubbles  

 Grow the bubbles via rectified diffusion.   

 Frequency optimization likely required  

 Rapidly remove bubbles before they can dissolve 

 

[1] Louisnard and Gomez (2003): Theoretical predictions of rectified diffusion of air in water 
(1 bar, 26.5 kHz acoustic  field)  
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Project Schedule & Status Summary 
 Task 1 – Project Management and Planning 

 Task 2 – Process optimization 

 Batch-mode ultrasonics provided modest CO2 release 

 Enzyme-solvent compatibility and absorption kinetics targets met 

 Integrated Bench-Scale system designed 

 Task 3 – Initial Technical & Economic Feasibility  

 Indicated opportunity for 25% net efficiency improvement vs Case 10 

 Task 4 – Bench Unit Procurement & Fabrication 

 Proto-type flow-through ultrasonic unit built & tested 

 Constructed bench-scale absorber and host rig with vacuum stripper 

 Task 5 – Bench-scale Integration & Shakedown Testing 

 Commissioning and shakedown testing w/vacuum stripping in progress 

 Long-term enzyme stability and reclamation in progress 

 Initiating kinetics-based stripping simulation 

 Task 6 – Bench-scale Testing 

 Task 7 – Full Technology Assessment 
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 Aspen Plus® (with Radfrac) used for Process modeling for absorption 

 AspenTech’s Capital Cost Estimator® along with budget supplier quotations 
used for Cost Estimation of the PCC Components 

 Preliminary techno-economic evaluation for the process integrated with a 
subcritical coal-fired power plant was carried out indicating net efficiency 
improvement of up to 25% versus Case 10: 

 

 

 

 
 

 

 

 

 

 

 Key underlying assumptions were:  

 Acceptable enhancement of CO2 absorption rate via enzyme  

 Acceptable enzyme longevity in process  

 Ultrasonic regeneration in no more than two stages (1.5 kJe/ kg of solvent) 

 Vacuum regeneration at 6psia and 70°C 

Net efficiency, % LCOE ($/MWhe) 

Case 10 24.9 119.6 

Power Equivalent of 
0.0911 kWh/lb of 
steam 

Vacuum Regeneration 24.3 125.2 

Ultrasonic Regeneration 26.6 117.5 

Power Equivalent of 
0.0665 kWh/lb of 
steam 

Vacuum Regeneration 30.0 112.9 

Ultrasonic Regeneration 31.4 108.9 
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Preliminary Technical and Economic Feasibility 



Acceptable CO2 Absorption Rate 

 Solvent: aq. 20% K2CO3 + carbonic anhydrase 
 Demonstrated acceptable kinetics (mass transfer) with enzyme 
 Temperature (30-50°C) had minimal impact 
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Acceptable (Lab Scale) Enzyme-solvent Longevity   

 Static incubations demonstrate high robustness at 40°C and limited 
robustness at 70°C.  

 A more representative test (recirculating between 40-70°C) 
demonstrates high robustness across the temperature range.  

Solvent: aq. 22% K2CO3/KHCO3 with 3 g/L enzyme and adjusted to lean pH. 
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Basis for Ultrasonic Regeneration Energy Projections  

Commercial water sterilization = 0.24 to 0.79 kJe/ kg of water  

 Based on developed applications for ship ballast treatment [2] 

 

Initial batch testing for CO2 regeneration = 4.9 kJe/ kg of solvent 

 Laboratory horn used.  Poor CO2 removal (significant re-dissolution)  

 Demonstrated value = 10.3 kJe /mol of CO2, 0.021 kg of CO2 removal 
per kg of recirculated solvent recirculation assumed. 

 

Full-scale CO2 regeneration system estimate = 1.5 kJe/ kg of solvent 

 Based on (conservative) tube sonication configuration 

 Equates to just over 11 MWe of parasitic power for the ultrasonic 
system in the 500 MWe reference system) 

 

 

 

[2]  "Ballast water treatment technology, Current status," February 2010 
(http://www.lr.org/Images/BWT0210_tcm155-175072.pdf) 
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Ultrasonic Testing Platforms  
 

Vessel 

Ultrasonic Horn 
(inverted horn 
configuration) 

Solvent 
Recirculation 

Temperature 
Controlled 

Bath 

Gas Exit w/ 
Condenser 
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Batch System 

Can introduce ultrasonic power while 

maintaining temperature to within 2oC. 

Semi-Continuous System 

Large reservoir of solvent recirculated.  

Gas separated after sonication via 

hydroclone 

Acoustic 
Transducer 

Hydroclone 

Solvent 
Recirculation 



Initial Batch Ultrasonic Experiments 
 

Pure Water at 70oC                    
– With Sonication   

Loaded Solvent at 70oC           
– No Sonication   

Loaded Solvent at 70oC                    
– With Sonication   
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 Significant agitation/ bubbling observed when ultrasonic power added 
to loaded K2CO3 solution at 70°C  



Batch Test Results for Ultrasonic Regeneration  

Testing with 20 wt% K2CO3 solvent loaded to 4.6 wt% CO2 

ASPEN (equilibrium) projections of CO2 release at 6 psia = 0.96% 

Total CO2 release observed = 0.67% (0.25% from ultrasonic effect) – 
likely impacted by re-dissolution of CO2 

Slow CO2 release rates observed – also likely impacted by                
re-dissolution of CO2 

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

45 60 75 90 105 120 135 150 165 180 195

So
lv

e
n

t 
Te

m
p

e
ra

tu
re

 (
C

, b
lu

e
 m

ar
ke

rs
)

C
O

2
 R

e
le

as
e

d
 (

g/
g-

[K
2

C
O

3
-H

2
O

],
 g

re
e

n
 m

ar
ke

rs
)

Elapsed Time (min)

U
lt

ra
so

n
ic

 
P

o
w

e
r 

O
n

U
lt

ra
so

n
ic

 
P

o
w

e
r 

O
n

Enzyme 
Added

Initially purged 
the gas-tight 
headspace with 
humidified CO2 

16 



All tests with 20 wt% K2CO3 – temp tests at ~82% (converted to 
bicarbonate), vacuum and ultrasonic tests at 72% 

Similar kinetic rates (initial part of curves) but higher with enzyme – 
kinetic limitation? 

Total CO2 release low for ultrasonic test – CO2 re-dissolution suspected 
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Comparison of Batch-mode Regeneration 
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Ultrasonic Flow-Through Results   
 

 CO2 release rate similar to batch studies – can be explained by 
temperature increase alone 

 Enzyme additions unexpectedly decreased release rate – likely        
due to foaming 

spool entry 

spool exit 
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Summary of Regeneration Testing Results    
 

 Multiple passes (5+) required for significant CO2 release from both vacuum and 
ultrasonic flow through tests – kinetic limitation suspected 

 Ultrasonic flow through results within temperature-driven projections;           
not in line with 70°C, 6psia vacuum target 

 Current ultrasonics configuration delivers insufficient CO2 release 
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Bench-scale Demonstration Unit Status 

 Design capabilities: 

 Dual regeneration sources (vacuum and 

ultrasonic) 

 Able to assess long-term enzyme stability 

 Able to assess mass transfer 

 Construction complete: 

 Host rig framework 

 Absorber 

 Vacuum regeneration 

 Heat transfer 

 Instrumentation check and calibrations 

 Unit commissioning for vacuum 
process in progress 
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Key Bench-scale Operational Parameters 

 Flow rates 

Gas: 10- 30 SLPM 

 Liquid : 100-300 ml/min 

 Liquid temperature 

 Absorber inlet: 30-40 °C 

 Stripper outlet: 70-80 °C 

 Stripper pressure: 0.25-0.4 atm 

 Enzyme dose: 3-5 g/L 
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Optimized 
parameters yield 
process energy 

Add ultrasound, 
Maintain lean 

loading 

Comparative energy 
for ultrasound 

advantage 

Add ultrasound, 
Maintain lean 

loading 

Comparative energy 
for ultrasound 
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Conclusions and Next Steps 

22 

 Target absorption kinetics and enzyme robustness measured 

 Visual evidence of ultrasonic effect shown in batch system 

 Preliminary techno-economic evaluation indicated potential for net 
efficiency improvement of up to 25% versus Case 10 

 Construction of bench-scale absorption column with vacuum 
regeneration completed and commissioning in progress 

 Flow-through bench-scale ultrasonic regeneration system was 
assembled and tested 

 CO2 release rates below single-pass stripping target for the project 

 Low CO2 release rates may point toward a kinetic limitation in stripping;  
enzyme catalyst could help overcome this limitation 

 Ultrasonics in current configuration delivers insufficient CO2 release 

 Project now focuses on validating the potential for low temperature 
regeneration by developing a rate-based simulation for vacuum 
stripping corroborated by data from bench-scale testing 
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